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J. Phys. A: Math. Gen. 14 (1981) 1469-1482. Printed in Great Britain 

Nonlinear scattering processes in the presence of a 
quantised radiation field: I. Non-relativistic treatment 

J Bergou and S Varr6 
Central Research Institute for Physics H-1525 Budapest, POB 49, Hungary 

Received 28 March 1980 

Abstract. The Hamiltonian of a non-relativistic free charged particle interacting with one 
quantised mode of the electromagnetic field is diagonalised exactly in dipole approximation. 
The diagonalisation is simpler for a circularly polarised mode, but it is shown that the case of 
a linearly polarised mode can be reduced to the circularly polarised one. Exact stationary 
and time-dependent states of this Hamiltonian are then calculated. Based on these results, 
the rederivation of the nonlinear inverse and direct bremsstrahlung’s cross section is 
presented and the connection with earlier (semiclassical) approaches is also established. 
Photon number distribution functions for different initial conditions are also determined in 
analytical form. 

1. Introduction 

This work is devoted to investigating an important model for the interaction between a 
free electron and an optical plane electromagnetic wave. In the model the electron is 
described by non-relativistic quantum mechanics, and the vector potential specifying 
the mode of the radiation field to be dealt with is considered as a quantised field 
quantity. 

In the past fifteen years varipus nonlinear interaction processes of free charged 
particles with light (such as intense Compton scattering, direct and inverse bremsstrah- 
lung in the presence of an intense light field, etc) have been very carefully investigated 
by semiclassical methods (Ehlotzky 1978, Kroll and Watson 1973). The idea common 
to these methods was to use the exact wavefunctions of the electron in an external plane 
electromagnetic wave as a basis set when treating the other interactions (with a new 
mode or with a background potential) with the help of perturbation theory. In spite of 
the fact that in calculations of this kind light is dealt with as a classical field, transition 
amplitudes of the electron and energy-momentum balance of the scattering processes 
can most easily be interpreted in terms of the photon picture. Thus, the approach to 
these problems proposed in the present paper was motivated in one respect by the 
necessity for the foundation of the above-mentioned intuitive photon picture. On the 
other hand, it is also clear that the external field approximation used in the semiclassical 
theory for the photon field becomes inapplicable if one wishes to consider absorption of 
light by free electrons (low-density electron gas). This holds in particular when the 
depletion of an optical mode due to nonlinear inverse bremsstrahlung of free electrons 
is considered. 

In view of this, we consider that a non-perturbative description beyond the usual 
semiclassical treatment of the multiphoton transitions of a free electron is likely to be of 
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interest. The starting point of our method is the exact solution to the Schrodinger 
equation of the system ‘electron + quantised electromagnetic mode’; therefore the next 
two sections are devoted to finding the stationary and time-dependent states of this 
system. In the following section the solutions obtained in this way are applied to the 
description of the nonlinear bremsstrahlung of a free electron, and we rederive by 
simple methods the cross section of the process determined a few years ago by other 
methods (Osborn 1972). In Q 5 the aforementioned photon statistics are investigated 
and in the last section the results are briefly summarised and discussed. 

2. Exact solution for the case of a circularly polarised mode 

In this section we solve exactly the Schrodinger equation of the system ‘one electron + 
one circularly polarised quantised mode of the EM field’. From the beginning we 
introduce dipole approximation, and the vector potential reads 

A =cu(Ea+&*u+) (2.1) 

where 

a = c(27rh/wv)1’2 

&E = E * & *  = 0 ,  

and 

& * E  = 1. 

( 2 . l a )  

( 2 . l b )  

Here a and a+ are the absorption and emission operators belonging to the mode 
specified by the E complex polarisation vector, V is the volume of the quantisation box 
and w is the mode frequency. The symbols * and + stand for complex and Hermitian 
conjugation, respectively. 

In general, the interaction of radiation with free charges is described by the 
following Schrodinger equation in the non-relativistic case: 

iha$(t)/at = H$(t)  (2.2)  

where the Hamiltonian of the system can be decomposed into three parts in a natural 
way: 

H=He+Hf+HI, (2.2u)  

where 

(2.2b) 

In the case of a circularly polarised mode, the A2 term of the HI interaction Hamil- 
tonian can be incorporated into H,, the Hamiltonian of the field. By using equations 
( 2 . 1 ~ )  and ( 2 . l b ) ,  we obtain 

H f + ( e 2 / 2 m c 2 ) A 2 =  hO(a+a +$), (2.3) 
n = w ( 1 + w ; / 2 w 2 ) ,  wp = 47re2/mv.  (2 .3a)  

Here wp can be formally identified with the plasma frequency of an electron gas having a 
density of one electron/quantisation volume. By using (2.3) and (2 .3a )  we can see that 

2 
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the total Hamiltonian of the full system has the form 

H = p 2 / 2 m  +hn(a 'a  + i ) - ( e a / m c ) p ( & a  +&*a+).  (2.4) 

Let us turn our attention to the interaction still present in (2.4), which is now linear in a 
arid a+.  As we will show, it can be eliminated by an appropriate unitary transformation. 
To perform this, let us introduce the unitary operator 

D, =exp(ua'-u+a) (2.5) 

which has the displacement property 

D i ' a D ,  = a +U,  D,'a+D, =a++(+'. (2.5a) 

The operator quantity U will be specified later on; at present we merely assume that it 
commutes with a, a+,  p ,  and U+.  Perform now the unitary transformation on H :  

x = D;'HD, 

- p 2  + t i n ( a + a + + + u + u ) +  hnu+--ppE a 
e(y ) 2 m  ( me 

-- 

(2.6) 
ea 

( mc ea ) mc 
+ hncr - -p~*  a+-- p ( E u + E * u + ) .  

If we define U by 

hnu = (ecr/mc)pE*, (2 .6a)  

then the transformed Hamiltonian 2 does not contain any interaction term, and the 
operators acting on electron coordinates are entirely separate from those acting on 
photon coordinates. Furthermore, in the basis { Ipn)}  = {ip)ln)} it becomes diagonal 
(here l p )  is a momentum eigenstate of the electron and In) is a number state (Fock state) 
of the field). It is also clear that the above method is suitable for eliminating the 
interaction with the long-wavelength part of the full radiation field if coupling between 
modes is neglected. The unitary transformation acting in this way is an infinite product 
of displacement operators of the type (2.5),  belonging to one particular mode. A similar 
transformation was introduced by Bloch and Nordsieck (1937) when they first solved 
the problem of the elimination of infrared divergences from OED. 

The stationary Schrodinger equation belonging to (2.2) is 

Hp = Ep, p = exp[(i/h)Et]$. (2.7) 

Having performed the unitary transformation (2.5), we can see that this becomes 
equivalent to the eigenvalue equation 

2rx = Ex, x = D ; b ,  (2.8) 

where, according to (2.6) and (2 .6a) ,  

x = p 2 / 2 m  +tin(a+a ++-uta). (2 .8~1)  

x can be chosen in the form of a product of the l p )  free electron momentum eigenstate 
(plane wave) and the In) Fock state (number eigenstate) for the photons. The so!utions 
of (2.7) can easily be obtained by the inverse transformation in the form 

P p p n  =: Ip)D,In), n = 0 ,  1 , 2 , .  . . . (2.8b) 
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The corresponding energy eigenvalues are 

E = ~ ( p ,  n )  =p2/2m + t i ~ ( n  +$-u*u), ( 2 . 8 ~ )  

It should be noted here that U is already a c-number, defined by the matrix element of 
( 2 . 6 ~ ~ )  in momentum representation. Due to the unitarity of D,, the states ppn in 
equation (2.86) form a complete orthonormal system. From equations (2.86) and 
(2.8c), it can be seen that at a fixed value of the momentum the lowest energy state of 
the mode (n = 0) is a coherent state, since D, is the creation operator of the quantum 
mechanical coherent state with parameter a (Glauber 1963a, b). Hence 

n = 0 , 1 , 2 , .  . . . 

P P O  = IP)ld, la) = D,/O). (2.9) 
If in addition to stationary states one is also interested in the dynamics of the system, 
one has to solve directly the time-dependent equation (2.2). Let 

~ ( t )  = exp [-(i/h)hR(a+a +:) t ]p( t ) .  (2.10) 

In the interaction picture with respect to the free photon field defined by equation 
(2.10), equation (2.2) has the form 

K(t)cp(t) =ihdcp(t)/dt (2.11) 

where 

K ( t ) = p 2 / 2 m  - ( e c r / m c ) p ( ~ a  e- 'nr+e"a+e 'nr) .  (2.11a) 

Looking for the solution of (2.11) in the form 

(2.12) 

we obtain for the real c-number function f ( t )  the expression 

(2.12a) 1 f(t) = -i [ K ( t ) ,  / ' K ( T )  dT = hRa*a[cos R(t-to)- 11 
h 2  10 

where we used the relation a eB/dt = {dB/dt +i[B,  aB/at]} eB, if both B and dB/at 
commute with [B, aBlat]. 

Finally, the solution of equation (2.11) takes the form 

where 

D[cr(t, t o ) ]  = exp[u(t, r o b +  -u*(t, t o ) a ]  (2.13a) 

and 

a(r, to) = (ea/mchR)(e'"' - e-In'o). (2.136) 

If p ( l o )  describes a bare electron propagating in vacuum, then the photonic part of rp ( t )  
corresponds to a coherent state of parameter a(t, to) given by equation (2.136) 
(Glauber 1963b). We also note that in this case $ ( t )  is coherent too. Therefore one 
may conclude that the long-wavelength components of the self field of an electron are in 
a coherent state. We shall further investigate photon statistics with the help of the 
stationary and time-dependent solutions in $ 5. 
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3. Solution for the case of linear polarisation 

In the previous section we diagonalised the Hamiltonian of the system 'one electron + 
one circularly polarised mode' with the help of the displacement operator D,. This 
method leads to similar results in the case of a linearly polarised mode as well, provided 
that an appropriate transformation of the a and a+  operators is introduced. This 
transformation reduces the problem to a problem identical in form with the circularly 
polarised case. 

The Hamiltonian of the system now reads 
2 2  P 2  ea e a  

2 m  mc 2mc 
H = - + ~ R ( u ' u  + 3) - - p e  ( U + U +) + 7 [a  + (U ' ) ' ] .  (3.1) 

'Here e is a real unit vector of polarisation, and a and a+ are absorption and emission 
operators of the linearly polarised mode; R is again given by ( 2 . 3 ~ ) .  

Let b l  and b2 be real numbers and let us define the operators b, b' by the following 
relations. 

b = bla + b 2 ~ + ,  6' = bia++ b 2 ~ .  (3 .2)  
If 

b : - b : = l  ( 3 . 2 ~ )  

then the commutation relation for b and b' is the same as for a and a', 

[b, b'] = 1. (3 .2b)  

It is convenient at this stage to introduce a new parameter 8 with the substitutions 

b l =  cosh 8, b2 = sinh 8. ( 3 . 2 ~ )  

Equation ( 3 . 2 ~ )  will then automatically be fulfilled and the transformed operators b 
and b' are now specified by a single real parameter. 

It is easy to check that upon substitution of b and b' into (3.1) and requiring 

( s / h R )  = tanh 28 (3.3) 

to hold, we obtain the Hamiltonian, in terms of b and b', in a form similar to the case of 
the circular polarisation, equation (2 .4):  

H = p 2 / 2 m  + hv(b+b +$) - ( ea /mc)pe  e-@(b + b') (3.4) 

(3 .4a)  

Furthermore, from equation (3.3) one can determine the actual value of 8, and the 
transformed frequency Y can also be expressed in terms of the radiation frequency w 
and the plasma frequency wp: 

where 

Y = R sech 28 

(3.4b) 

and 

Y = w ( l + p ) { l - [ p / ( l + p ) ] 2 } 1 ' 2  (3 .4c)  
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where 
p = w;/2w2.  (3 .4d)  

In the case of wp << w,  p becomes very small and then v and Cl are practically identical 
with 0. 

The stationary and time-dependent Schrodinger equations belonging to the Hamil- 
tonian (3.4) can be solved completely analogously using the method outlined in the 
previous section. With the help of the displacement operator 

D, =exp [ p ( b + - b ) ] ,  p = (ecu/mchv)pe e-*, (3.5) 

[ p 2 / 2 m  +hv(b'b +$-p2)]D,'cpb = E&Di1cpb. (3.6) 

one can diagonalise the Hamiltonian (3.4) in the Fock basis {lI)b} of the b+b operator: 

Thus the solution of the stationary Schrodinger equation for the case of a linearly 
polarised mode becomes 

(Pb = l P ) D p / l ) b ,  I = O ,  1 , 2  ) . . . )  ( 3 . 6 ~ )  

E~ = ~ ~ ( p , . l )  = p 2 / 2 m  + t l v ( l + f - p 2 ) ,  1 = 0 , 1 , 2  ) . . . .  (3 .6b)  

1 p )  is again a free plane wave with momentum p of the electron. The transition from the 
Fock basis of the original a+a operator to the { l l ) b }  Fock basis of the b ' b  operator 

is effected by the transformation 

(3 .7)  

The problem of the determination of the matrix elements . (k l l )b  can be reduced to 
the separate determination of the matrix elements of the b vacuum (defined in the usual 
way as bIO), = 0, and a more complicated matrix element defined entirely between the 
lk)n states: 

" 1  
a ( k l I ) b  = 1 T . ( k l ( a ' c o s h  @ + a  sirih O)'12m),a(2m10)b ( 3 . 7 ~ )  

m = o  (I!) 

where from the definition of the state lo), it can easily be shown that 

( 1  x 3 x . .  . ( 2 m  - 1))"' 
. ( 2 r ~ / O ) ~  = (-tanh 0)'" -___- a ( O l O ) b ,  m = 1, 2 , .  . . , (3.7b) 1 x 2 ~  . . .  x 2 m  

and 
.(OlO)b = (cosh (3 .7c)  

This last relation i s  a consequence of the normalisation condition b(O1o)b  = 1 of the b 
vacuum. An explicit calculation of the matrix elements G k l ( 8 )  was first given by Tanabe 
(1973).  All those . ( k l l ) b  matrix elements disappear for which k + 1 = odd number. If 
the electron-photon system is in the Ith excited state with energy & ( p ,  I )  then, 
depending OII whether 1 is odd or even, this state according to equation (3.7) can be 
expressed from the linear superposition of Fock states with odd or even number of 
photons respectively, with the help of the D, operator (3 .5 ) ,  as indicated in (3.6~1). In 
particular, the vacuum of b'b is a linear superposition of infinitely many photon states, 
each containing an even number of photons. This is not surprising if one takes into 
account that the transformation (3.2) eliminates the interaction part proportional to 
[ a 2 i -  (a-)". 



Nonlinear scattering processes : I 1475 

For the sake of completeness we also mention that the Bogoliubov transformation 
(3.2) can be effected by a unitary operator Ca. Taking into account (3 .2c) ,  this 
generator has the form (Tanabe 1973) 

C, = exp[fO(a +a + - nu)] .  (3.8) 

Ci'aCa = 6, C,'a+C, = 6'. (3 .8a)  

The transformation (3.2) can now be written formally as 

The transition from the complete set of eigenstates of the a+a operator to the 
complete set of eigenstates {Il)*} of the b'b operator can be performed with the same 
operator CO ; thus it gives the representation-independent definition of equation (3.7) as 

lQb = c,' / U a  (3 .8b)  

or in other words 

. ( W b  = a ( k l C 2  IOa. 

Finally, for the wavefunction we can replace equation ( 3 . 6 ~ )  by 

(Pb = /p)DLb'l l)b = Ip)DF'ci ' / l)a 

= /p)cilcaD~'c,l ll)a = Ip)c,fDb"'/l)a 

where CO and 0:' are both now defined in the original Fock basis { l l )a} .  

( 3 . 8 ~ )  

(3.9) 

4. Application to direct and inverse bremsstrahlung 

In this section we shall consider the scattering of electrons by a background potential in 
plasmas. We also allow the electron to interact with one quantised mode of the 
electromagnetic field during the scattering. This problem was first studied by Osborn 
(19721, who calculated the cross section of processes of this kind for the case with 
Coulomb-type background potential; with the help of cross sections he then deter- 
mined energy absorption coefficients resulting from nonlinear direct and inverse 
bremsstrahlung. However, the method proposed by him is too tedious, and moreover 
the result given in that paper for the transition amplitudes is erroneous. From these 
amplitudes he determined the correct cross section formulae; nevertheless, the physical 
picture involved in his formulae is slightly different from that taken as a starting point 
for his calculations. This is why we feel it is necessary to reinvestigate the problem in 
some detail. For the sake of simplifying the following calculations we introduce the 
same assumptions as were made by Osborn. First, we consider the ionic background as 
Debye shielded and the reaction of electrons to the background is neglected, i.e. we 
assume infinitely massive ions. Second, as the Debye length is usually less than the 
wavelength of optical photons, this justifies the treatment of the radiation mode in 
dipole approximation (elkr = e-'kr -- 1). 

The average number of photons in intense laser fields can be so large that interaction 
of the electrons with the field becomes stronger than the interaction with the ionic 
background. Therefore, we treat the V ( r )  scattering potential as a perturbation (rather 
than using the proper continuum eigenfunctions in a central field). A detailed explana- 
tion of the method using seiniclassical treatment is given in Bergou (1980).  
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In accordance with these preliminary considerations, we shall describe the initial 
and final states of the 'electronfone mode' system by the ( 2 . 8 ~ ) -  or (3.6b)-type 
stationary wavefunctions specified by the pi, 77 and pf, 77 i n initial and final momenta 
and photon numbers, respectively. The transition amplitude between such states 
therefore has the form (to first order in V(r): 

If we carry out time integration, we obtain the expression 

where 

To calculate the matrix elements more explicitly, we make use of the relations 

D,P, = exp[-;(m& - ~ U ~ ) I D ~ , + ,  (4.3) 
and 

By using equations (4.3) and (4.4) in (4.2), we can write the matrix elements 

(77 + n 1 ~ - , ~ , 1 q )  = (i) eiiflx[(V n ) ! V  !I"' exp[i(ufuT -atu, l  

(77 * nID-,D,Iv) as 

(4.5) 

where 

r = ui-uf, x = arg r. (4.5a) 

(i) in front of the RHS of equation (4.5) should be replaced by (-1)" if the final state is 
177 - n ) ,  and by 1 if the final state is 177 +a). The relation of these matrix elements to the 
generalised Laguerre polynomials is (Abramowitz and Stegun 1964) 

and 

(4.5b) 

(4.5c) 

Here we note that if one considers transitions between time-dependent states, one 
has to use (2.13)-type initial and final states. Hence 
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Here I-yJ and 1yr) respectively denote arbitrary initial and final photon states. If, for 
example, Iri) = 17) and lyf) = Iq * n)  number states, then the photonic part in the 
integrand of (4.6) is entirely similarly to (4.5a), with the only exception that the 
corresponding a’s are now time dependent: 

(4.7) 

where 

r(t) = ai(t ,  to) - adt, to), X ( t )  = arg ~ ( f ) .  (4.7u) 

Here ai,f(t, to) should be calculated according to (2.136). Equation (4.7) clearly 
contradicts Osborn’s corresponding result given by equation (7) of his paper (Osborn 
1972), where the contribution from the photon part is given by an infinite sum. We note 
also that in his paper interaction with a linearly polarised mode was considered and the 
A’ term was arbitrarily dropped. This approximation is essentially identical with the 
circularly polarised case of the present paper. 

We now turn our attention to the differences of transitions between stationary and 
time-dependent states. It is clear that the physical backgrounds of the matrix elements 
(4.1) and (4.6) are different. Equation (4.1) corresponds to transitions between two 
stationary states of the type ( 2 . 8 ~ )  (or (3 .6~ ) ) .  These states possess a well defined 
energy, and due to energy conservation (expressed by the Dirac delta function of 
equation (4.2)) 

Ef(Pf, 77 *n)=Ei(pi ,  T ) ,  (4.8) 

p:/2m - t i ~ ( l a f / ~ ~ n ) = p ; / 2 m  - h ~ l a ~ l  2 . 
which in the case of circular polarisation becomes 

( 4 . 8 ~ )  

Equation ( 4 . 8 ~ )  expresses the fact that during scattering the photon content changes. In 
§ 5 we shall see that in the state D,Iq) the average photon number is q + 1 0 - 1 ~  and, since 

is usually small for non-relativistic electrons, equation ( 4 . 8 ~ )  may be interpreted so 
that during scattering the electron emits or absorbs n photons. Of course, in the case of 
stationary states this does not mean that in the system initially there are q photons 
(since the initial state is not a number state), and this changes to q * II during scattering. 

In the following we evaluate the matrix element (4.5). The interesting case from the 
point of view of applications to real processes is the one when 77 >>a. Then, by 
comparing it with the series expansion of the Bessel functions (Abramowitz and Stegun 
1964), 

we find that (4.5) can be well approximated by the formula 

1 ( ~  * n~D- , ,D , l~~) /2  = J’, (21dJ i ) ,  

where for circular polarisation 

/ T I  = (ea/mchR)l&QI. 

(4.9) 

(4.9u) 
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In classsical approximatior., J i  in the argument of the Bessel function can be expressed 
through the amplitude of the vector potential for a classical field in the following way: 

A0 = 2aJr7, 2 1 7 / 4 =  (eAo/mctill)l&Q1. (4.10) 

The scattering cross section of the nonlinear direct and inverse bremsstrahlung can 
now be obtained from the transition amplitude (4.2) in the usual way. After introducing 
the approximation indicated by (4.9) and (4.10), one finally obtains 

J Bergou and S Varro' 

(4.11) 

(4.1 l a )  

is the cross section of the elastic scattering in Born approximation and pf and pi are 
related via the energy conservation law ( 4 . 8 ~ ) .  It can also be shown (see the 
fundamental work of Nordsieck (1937)) that the nth-order cross section of the 
low-frequency multiphoton direct and inverse bremsstrahlung has the more general 
structure 

(4.12) 

Here da,,/dllf is the full elastic cross section of the scattering by V ( r ) .  Thus equation 
(4.12) reproduces the semiclassical result obtained in a different way (Kroll and Watson 
1973). 

The energy absorption coefficient of electrons (connected with the heating of plasma 
due to nonlinear inverse bremsstrahlung) was also computed by Osborn (1972). Since 
this involves a summation over different n - -s ( n  = number of absorbed and emitted 
photons), one has in principle to use the exact cross section formula which, from 
equation (4.1), can be given as 

In  the calculation by Osborn, equation (4.11) was used for all values of n. For II - 77 this 
causes an error since the ratio of 1J,(21qv q)1 (approximate) to ( 1 ~ 1 ~ " / 7 7 ! )  (exact) can be 
estimated to have a lower limit equal to (I~lJ77/2)". In the case of high intensity 
(7 >> I), this expression does not converge, and one has to use the exact expression 
(4.13). 

I i- 

5. Photon statistics 

According to what was said in 5 5 2  and 3, the case of circular polarisation is simpler, and 
therefore for the sake of brevity we shall consider this case only. 

As we have seen in equation (2.8), the stationary states of the system 'electron + one 
circulary polarised mode' can be given as a product of the momentum eigenfunctions of 
the electron and the Dclq) photon states. If in the solutions given by equation (2.13) we 
take cp(to) in the form of the product of a momentum eigenstate and a Fock state, then 
the photonic part of the full p ( t )  (or $ ( t ) )  wavefunction becomes 

nh?)= lqo)  (5.1) 
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as in the stationary case (but 17) here is arbitrary and v is time dependent). The photon 
states (5.1) can be expanded in the Fock basis of the number operator 

where 

cr = (rlD,/qj. ( 5 . 2 ~ )  

Consider first the case when 17) is a number state. Then the c, coefficients can easily be 
calculated from equation (4.4) as 

D,17) therefore represents a superposition of Fock states, where the photon number 
distribution is given by /crI2 of (5 .3 ) ,  depending on the electron parameters through v. 
As a consequence of the unitarity of D,, the sum of the probabilities Ic,12 is unity, and 
the probability distribution function is normalised. 

Let us compute the expectation value of the photon numbers in the 17,) state: 
00 

( r ) =  C lCrj2r=(77ID,la+aD,lrl) 
r = O  

The second moment of the distribution can be computed also by taking into account the 
( 2 . 5 ~ )  displacement property 

00 

( r ’ )=  C l C r / 2 r 2 = ( ~ I ~ a 1 ( ~ + ~ ) 2 ~ , I ~ j  
,=O 

The mean square deviation from equations (5.4) and (5.5) is 

((Ar)’) = ( r 2 )  - (1)’ = 2101’(7 +$). ( 5 . 6 )  

Formulae (5 .3145 .6 )  can be applied to the time-dependent states as well, if 177) is the 
initial number state. The electron-photon interaction smears out the sharp initial 
distribution [ c r ( to )  = S, , ]  into a distribution centred around 77 + 1vI2 with a spread given 
in (5.6). We see also that the distribution is asymmetric around the initial state 
(otherwise the expectation value should remain 7 for all times). In the case of an 
extremely large initial photon number, the arising distribution will have its main 
contribution around the initial photon number, i.e. the values lc,,+,/’ (7 >>n) are of 
special interest. By using the same approximation as the one when passing from 
equation (4.5) tb equation (4.9), we obtain for the probability of the r = 77 f n state 

1CVJ -Jt (21v14. (5.7) 

We note, however, that this is symmetric around 7 ; therefore, for example, a change 
in the mean photon number cannot be calculated correctly in this approximation. 
Another interesting property of (5.7) is the existence of induced resonances, i.e. by 
changing the intensity we can enhance a certain n and suppress the others. The 
coefficients behave very similarly in the stationary case. (We also note that the square of 
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the modulus of the coefficients in the Fourier expansion of the solution of the 
Schrodinger equation with the classical vector potential A = 2aJ77(~ eiwr + E *  e-’“‘ ) is 
identical to expression (5.7)). 

If, in particular, 177) is the vacuum state in equation (5.1) then, as we have already 
mentioned in connection with equation (2.9), lq,) is a coherent state with parameter a 
(Glauber 1963a, b): 

177,) =” = /d. ( 5 . 8 )  

The distribution of photon numbers is a Poisson distribution with the parameter 

If we use the multiplication rule of the displacment operator (4.3), it can easily be 
shown that if the initial state 177) is a coherent state with the parameter 77 (where 77 is now 
a complex number), then 117,) also remains a coherent state with the parameter 77 +a:  

M2. 

l ~ , ) = N v ) =  e x p [ - h * - a * ~ 7 ) I I ~  +a). (5.9) 

In this case we have the average photon number 

(r)=l~+77l2 (5.10) 

and the mean square deviation 

( ( A r ) 2 >  = la + 712. (5.11) 

According to equations (5.4)-(5.6) and (5.10) and (5.11), the interaction of photons 
and electrons increases the mean number of photons and smears out the initial 
distribution. Since a S ( E / ~ w ) ” ~ w , / o  (E  is the electron energy), a is usually small and 
the shift in mean photon number is negligible. However, the mean square deviation as 
given by (5.6) is proportional to the initial photon number, so that the spread of the 
developing distribution can be quite wide if 1771 is large. Essentially the same 
conclusions can be drawn for the case when the initial state is a coherent state. 

Finally we note that if a is time dependent, then the average value, the mean square 
deviation, etc of the distribution generated by 177,) oscillates in time with an amplitude 
proportional to leape/mchOn/*. The time average of these oscillations is of the order 
( E / h ~ ) ( w , / w ) ~  and is therefore negligible in comparison with unity. 

6. Summary and discussion 

We have already pointed out in the Introduction that, for the description of the 
scattering processes of a free electron in the presence of an intense field, semiclassical 
methods are not always applicable. On the other hand, it is also true that perturbative 
treatment of the high-order nonlinear processes using a fully quantised description is 
extremely clumsy. In this paper we have developed a relatively simple method to 
handle such problems. In § 4 we have illustrated for the nonlinear inveke bremsstrah- 
lung how one can determine in one step the amplitude of transitions between arbitrarily 
‘distant’ excitation levels of one quantised radiation mode induced by the scattering of 
the electron. To perform this, in § §  2 and 3 we have exactly solved the Schrodinger 
equation of the system ‘electron + one quantised EM mode’ in dipole approximation for 
linear and circular polarisations. With the help of the solutions (2.8b) we have 
calculated analytically the cross section of the direct and inverse bremsstrahlung of an 
electron scattered by a background potential (equations (4.11), (4.12) and (4.13)). We 
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have shown that the approximation (4.1 1)  for the case of large initial photon numbers, 
which is analogous to the semiclassical result, can be very different from the exact result 
when applied to the depletion of the mode. With this in mind, we cannot completely 
agree with the pure energy absorption coefficient of a plasma as calculated by Osborn 
(1972),  since he seems to have overlooked this discrepancy. 

In both cases (linear and circular polarisation) we have found that the spectrum of 
the system ‘electron +one quantised mode’ belonging to the stationary states 
parametrised by the quantum numbersp and 77 consists of essentially two parts, namely 
one continuous part ( p 2 / 2 m )  and one discrete part (nhR or nhv) ,  as shown by 
equations ( 2 . 8 ~ )  and (3.6b). R and v denote renormalised frequencies shifted towards 
higher frequencies with respect to the original w frequency. 

We also mention that the above Schrodinger equation can be solved almost exactly 
beyond dipole approximation as well, by using our method, if one introduces a new 
parameter a’ = (+ e-ikr in the D transformation. The main calculational difficulty is 
caused in this case by the recoil. 

From the results of Q 3 we exactly determined the energy correction arising from the 
A 2  term for linear polarisation. The main contribution is due to the Aw = R - w shift 
and is usually very small. The solutions (3.6a),  according to (3.7) and (3.7a, b, c ) ,  are 
superpositions of states where the influence of the A2 terms is taken into account up to 
infinite order. 

In § 5 we dealt with the photon number distribution generated by the solutions given 
in the previous sections. Since the expectation values of the energies of the electron and 
the radiation mode are ( p 2 / 2 m )  and hw(n  +++ 1 ~ 1 ~ ) ,  the interaction energy -hAw(n + 
$+ / ( + I 2 )  - 2 h w 1 ~ 1 ~  appearing in the total energy of the system according to ( 1 . 8 ~ )  is very 
small in comparison with the energies of the subsystems (electron versus photons), and 
the photons are only weakly coupled to the electron. This does not hold, however, 
when the full radiation field (without restriction to one intense mode) is considered. But 
in the one-mode approximation this can also be seen from the fact that the expectation 
value of the mode energy as given by (5.4) is shifted only very slightly due to the 
interaction with the electron. The general time-dependent solutions obtained in § 2 
represent coherent states if the initial state of the mode was a coherent state (the 
vacuum in particular). In both cases (coherent or number initial state), the expectation 
values of the photon number are shifted and the mean square deviations increase, i.e. 
interaction with the electron smears out the distribution function. Since the field 
developing from the vacuum is the self field of the electron, on the basis of our exact 
results we may state that the low-frequency part of the self field of the electron is 
coherent or, in other words, is a classical field. The extension of the above results to the 
relativistic case and beyond dipole approximation (Dirac electron + a quantised EM 

mode) is in progress and will be published in a separate paper where the power of the 
method will be demonstrated on other scattering processes such as nonlinear Compton 
scattering. 
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